RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FIRST SEMESTER EXAMINATION, DECEMBER 2012

FIRST YEAR

Date : 21/12/2012 Time : 11 am – 1 pm ELECTRONICS (General) Paper : I

Full Marks : 50

An	nswer <u>any five</u> questions :	
1.	 Answer the following : a) Find the Gray Codes of the following binary numbers— 11001100 01011110 b) Find the addition of the following decimal numbers in BCD(8421) : 15 + 24 19 + 22 c) Convert the following decimal numbers to their hexadecimal equivalents : (214)₁₀ (214·356)₁₀ d) If (257)₁₀ = (401)_x, determine the value of x. 	[5×2]
2.	 a) State and prove De Morgan's Theorem for two variables. b) Minimize the following logic functions using K-map. i) f(A,B,C,D) = ∑m(0,1,2,3,5,7,8,9,11,14) ii) f(A,B,C,D) = Π M(4,6,10,12,13,15) 	[4+(3+3)]
3.	a) Distinguish between Combinational and Sequential Logic Circuit.b) Design an 8:1 multiplexer with two 4:1 multiplexers.c) Mention the applications of a multiplexer.	[3+4+3]
4.	a) "A decoder can be used as a demultiplexer." —Explain.b) Explain the operation of a 2:4 decoder and hence draw the logic circuit of the same using gates only.	NAND [4+6]
5.	a) What is the Race-around Condition? How is it overcome in a Master – slave J-K flip-flop?b) Draw the circuit of a D-flip flop using logic gates and explain its operation.	[2+5+3]
6.	a) Design a MOD-5 synchronous Counter using J-K Flip-Flop with proper Excitation & State T b) Explain the operation of a 4-bit shift register.	Гаble. [7+3]
7.	 Write short notes on <u>any two</u> of the following : a) Synchronous & Asynchronous Counters. b) NAND gate as a universal Logic gate c) Half and full adders 	[5×2]

d) SR flip flop